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LETTER TO THE EDITOR

Stochastic traffic model with random deceleration
probabilities: queueing and power-law gap distribution

Dmitri V Ktitarev†‡‖, Debashish Chowdhury†§¶ and Dietrich E Wolf†+
† HLRZ, Forschungszentrum, D-52425 Jülich, Germany
‡ Laboratory of Computing Techniques, JINR, 141980 Dubna, Russia
§ Physics Department, IIT, Kanpur 208016, India
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Abstract. We extend the Nagel–Schreckenberg stochastic cellular automata model for single-
lane vehicular traffic to incorporate quenched random deceleration probabilities. We show, by
computer simulations, that at low densities this model displays queueing of cars with a power-
law probability distribution of gaps between the cars while at high densities the behaviour of
the model is similar to the jammed phase of the standard Nagel–Schreckenberg model. The
approach to the steady state is characterized by the same critical exponents as for the coarsening
process in the simple exclusion processes with random rates, recently investigated independently
by Krug and Ferrari, and Evans. The numerical values of the exponents for gap distributions are
in agreement with the analytical conjecture of Krug and Ferrari, which implies that the models
belong to the same universality class.

During the last few years traffic problems have been investigated intensively using particle-
hopping models [1]. One of these models, introduced by Nagel and Schreckenberg (NS)
[2] and formulated in the language of cellular automata, has been quite successful in
reproducing the qualitative features of real traffic [3]. This model is characterized by
two dynamical phases—a low-density laminar phase and a high-density jammed phase.
Recently, Benjamini, Ferrari and Landim (BFL) [4] introduced a class of exactly solvable
particle-hopping models which generalize the asymmetric simple exclusion process (ASEP)
[5]. Krug and Ferrari [6] and Evans [7] investigated independently a simplified version of
the BFL model and showed that the jammed phase appears in this model at low densities
of cars. The aim of this letter is to propose a variant of the NS model, which also has
jamming at low densities and to compare the features of the traffic flow in this new variant
to the corresponding properties of the BFL model, considered by Krug and Ferrari, and
Evans (further referred to as the ‘BFL model’).

We recall the original formulations of the ASEP and the NS model. In both, single-lane
traffic on a ring of lengthL is modelled as a lattice ofL sites with periodic boundary
conditions. Each of theL sites can either be empty or occupied by one vehicle.

In the ASEP one particle is picked up at random and moved forward by one site if the
new site is empty. In this random sequential update it is the random picking that introduces
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stochasticity (noise) into the model. Thus, the maximum possible speed of a particle in
the ASEP isvmax = 1. In contrast, in the NS model, the speedv of each vehicle can take
one of thevmax+ 1 allowed integer valuesv = 0, 1, . . . , vmax. At each discrete time step
t → t + 1, the arrangement ofN cars is updated according to the following rules.

(1) Acceleration. If the speedv of a vehicle is lower thanvmax, the speed is advanced
by one (v = v + 1).

(2) Slowing down (due to other cars). If the distanced to the next car ahead is not
larger thanv(d 6 v), the speed is reduced tod − 1(v = d − 1).

(3) Randomization. With probabilityp, the speed of a vehicle (if greater than zero) is
decreased by one (v = v − 1); we shall refer top as thedecelerationprobability.

(4) Car motion. Each vehicle is advancedv sites.
Very recently, Krug and Ferrari [6] and Evans [7] have studied ASEP where the jump

rate of each individual particle is chosen initially from a suitable distribution of random
numbers. Supposeui = xi+1 − xi − 1 denotes the number of vacant sites in front of the
ith particle. Interpretingui as a particle occupation number in a statei, the occurrence of
a Bose–Einstein-like macroscopic condensation in one of the states was demonstrated. In
this ‘Bose-condensed state’ a finite fraction of the empty sites are condensed in front of the
slowest particle.

Figure 1. Gap distribution for the model with two deceleration parameters (circles) at a density
of 0.1 (p1 = 0.5, p2 = 0.1) and the same distribution for the standard NS model at a density of
0.35 and 0.1 (p = 0.1) (triangles and squares correspondingly).

Now we generalize the NS model and present our results. Let us first consider
the NS model with two different values of the deceleration probabilityp. Suppose a
randomly chosen fractionf of the drivers have the deceleration probabilityp1 whereas
the remaining drivers have the deceleration probabilityp2, wherep1 > p2. Since the
deceleration probability of each driver is fixed once for all in the beginning and is not
changed during the time evolution of the system, the disorder in the braking probability is
quenched. More ‘careful’ drivers in our model are characterized by a higher value of the
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Figure 2. Space–time plot of the random NS model withvmax= 2 and deceleration probabilities
distributed by the densityP1 (see text for formula), the car density is 0.1, length of lane
L = 1000. Dots are cars moving to the right. The vertical direction (down) is increasing time.
The three time intervals shown are separated by approximately 15 000 time steps. One long
queue appears after about 30 000 time steps.

deceleration probabilityp; these drivers tend to brake more often and accelerate slowly.
On the other hand, those ‘careless’ drivers who accelerate quickly correspond to a smaller
value of p. Sometimes such ‘careless’ drivers are also referred to as ‘aggressive’. The
behaviour of the model with a small number of ‘careful’ drivers is quite predictable: very
soon there appear several queues of cars, each led by a ‘careful’ driver.

In the BFL model [6] the queueing phase at low density occurs when the ‘slow’ cars,
even when a minority, hinder the movement of the fast ones behind. The ‘slow’ cars in the
BFL model are the analogues of the ‘careful’ drivers in our model.

The NS model withvmax = 1 and the BFL model differ only by the type of update
(parallel or random sequential [3], respectively). However, forvmax > 1 the qualitative
behaviour of the two models may be different. Our generalization of the NS model
combines the acceleration and slowing down of NS with the quenched random deceleration
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Figure 3. Log–log plot of typical queue length against time for the model presented in figure 2.
The dotted curve has a slope of 0.66.

Figure 4. Fundamental diagram for the random NS model (vmax = 2) with deceleration
probability distributionP1 (squares) and for the standard NS model with deceleration probability
p = 〈p〉P1 = 1/6 (triangles).

probabilities in the spirit of BFL. In this letter, we compare the main features of random NS
models withvmax= 1 andvmax= 2 with the corresponding properties of the BFL model.

We considered the two-parameter model for the length of freewayL = 1000, total
density of carsρ = 0.1 and the fraction of slow driversf = 0.1. The probability distribution
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Figure 5. Log–log plots of gap distributions at critical densities for the random NS model
((a) for vmax= 1, (b) for vmax= 2) with deceleration distributionsPn (n = 1, triangles;n = 2,
diamonds;n = 3, squares).

of the gaps in front of the cars in this model is characterized by the presence of the peak
at the pointvmax+ 1; it is qualitatively different from the corresponding distribution in the
NS model at the same density 0.1 (laminar phase), but is quite close to the gap distribution
of the jammed phase of the NS model at a higher density of 0.35 (figure 1).

This example shows that even a small perturbation of the stochastic parameterp in the
NS model leads to locally jammed situations even at low densities.

Next, we consider a more realistic situation where the deceleration probabilitiesp of the
drivers are chosen from a common random distribution with a decreasing density function
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P(p). We take for our simulations

Pn(p) = 2n(n+ 1)( 1
2 − p)n 06 p 6 1

2 n = 1, 2, 3.

The behaviour of this model is more complicated than the example considered above.
In the model with random deceleration probabilities after a prolonged time interval the cars
form one long queue (figure 2). We estimated the time of such a queue coarsening by
measuring the two-point correlation function

c(1x, t) = 〈ν(x, t)ν(x +1x, t)〉x − ρ2

where the functionν = 1 if there is a car at the pointx at time t , 0 otherwise;〈ν〉 = ρ, ρ
is the car density. The first zerol of the functionc corresponds to a typical queue length
at time t . The simulations for bothvmax = 1 andvmax = 2 random NS models show that
l ∼ t1/z, 1/z ' 0.65 for n = 1, 0.73 forn = 2 and 0.78 forn = 3. One of the cases
(vmax= 2, n = 1) is represented in figure 3. These estimations are in close agreement with
the analytical expression for the coarsening exponent of the BFL model

z = n+ 2

n+ 1
obtained by Krug and Ferrari [6] from extremal statistics estimates. Using the same
arguments for the traffic model with random velocities, Ben-Naimet al [8] derived the
similar formula for the cluster growing exponent. These arguments can also be applied to
our model, so it is plausible that the formula (2) is valid for the random version of the NS
model.

We note that the fundamental diagram for our model and the one for the standard
NS model have quite similar form (figure 4), so the qualitative distinction between the
models should be formulated in other terms. The main feature of the model with random
deceleration probabilities is that the system self-organizes into a stable queueing phase at
low densities and has the power-law decay of its gap distribution for some critical density
(figure 5). For high densities the cars are suppressed by the finite length of the lane and
have no more free space for self-organization.

The similar phenomena of ‘bunching of cars’ was pointed out by Nagatani [9] for the NS
model withvmax= 1 and the uniform distribution of deceleration probabilitiesp. However,
the gap distributions in that case do not possess power-law asymptotics.

Finally, we estimated numerically the critical densitiesρc and the critical exponentsα
of the gap distributionsP(g) ∼ g−α for our model withvmax= 1 andvmax= 2 for different
distributions of decelerationsPn. The results are represented in table 1.

Table 1. The estimations of critical exponentsα of gap distributions at critical densitiesρc

for the random NS model with differentvmax and different probability distributionsPn of the
deceleration parameter (see text).

vmax n ρc α

1 1 0.48 3.0
1 2 0.55 3.9
1 3 0.59 5.2
2 1 0.26 3.4
2 2 0.30 4.2
2 3 0.32 5.0

The distinction of our models from the BFL model is that for differentn the transition
occurs at different values of densities. The estimations ofα, however, are quite close to the
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formula α = n + 2 for the corresponding exponents in the BFL model, obtained by Krug
and Ferrari [6]. So it is quite plausible that the random NS model and the BFL model with
random rates are in the same universality classes.

In both the models of Krug and Ferrari [6] and of Evans [7] as well as in our model the
quenched randomness are the characteristics of the particles (or, vehicles) while the lattice
representing the highway lane is completely non-random. This should be contrasted with the
traffic model considered by Csahok and Vicsek [10], where quenched random ‘permeability’
is associated with each lattice site, rather than randomizingp.

To conclude, we have investigated numerically the general dynamical phases of car
motion in the NS model with quenched random deceleration probabilities. For a high
density of cars the behaviour of the system is similar to the jammed phase of the standard
NS model, for low densities the system displays the queueing of cars with power-law
distribution of gaps between them at some critical point.
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are also grateful for communicating to us his unpublished results. We also thank Harald
Kallabis and Lothar Brendel for help in producing the figures. Two of us (DVK and DC)
gratefully acknowledge the hospitality of HLRZ, KFA Jülich. DVK wishes also to thank
Sergei Nechaev for useful comments; his work was partially supported by the Russian
Foundation for Basic Research, grant No 95-01-0275.
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